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1. INTRODUCTION
In this report we discuss a paper “The Fundamental The-
orem of Linear Algebra” by Gilbert Strang [3]. This paper
is about the four subspaces of a matrix and the actions of
the matrix are illustrated visually with pictures. The pa-
per describes the “Strang’s diagram”, a diagram that shows
actions of A, an m × n matrix, as linear transformations
from the space Rm to Rn. The diagram helps to understand
the fundamental concepts of Linear Algebra in terms of the
four subspaces by visually illustrating the actions of A on
all these subspaces.

The goal of this paper is to present these concepts “in a way
that students won’t forget”. The problem that the author
faced is that students have difficulties understanding Lin-
ear Algebra. He proposes to solve this problem with the
aforementioned diagrams.

There are four parts of the Fundamental Theorem of Linear
Algebra: part 1, the dimensions of the subspaces; part 2,
the orthogonality of the subspaces; part 3, the basis vec-
tors are orthogonal; part 4, the matrix with respect to these
bases is orthogonal. In this report, we discuss part 1 and
part 2 only, and describe two diagrams: the solutions to a
system of linear equations Ax = b and the Least Squares
equations. We believe that it should give sufficient under-
standing to proceed with part 3 and part 4, described in
the paper. Additionally, in this report we elaborate some
proofs from the paper and illustrate the concepts with ex-
amples.

1.1 Notation
In this report we use the following notation: Greek lower
case letter α, β, ... are used for scalars, bold letters b,x, ...
– vectors, lowercase indexed letters x1, x2, ... – components
of vectors, capital letters A – matrices, indexed bold letters
a1,a2, ... , r1, r2, ... – columns or rows of a matrix. 0 is a
vector of appropriate dimensionality with 0 in each compo-
nent.

2. FUNDAMENTAL SUBSPACES AND DI-
MENSIONALITY

A vector space over real numbers R is a set where addition
and scalar multiplication operations are defined in such a
way that certain axioms, such as associativity, commutativ-
ity and distributivity are satisfied [2]. A subspace is a subset
of some vector space such that the subset is closed under ad-
dition and scalar multiplication, i.e. given some subspace S,
if x,y ∈ S then for any α, β ∈ R, (αx + βy) ∈ S.

For the matrix A ∈ Rm×n there are four fundamental sub-
spaces [1]:

• C(A): the column space of A, it contains all linear
combinations of the columns of A

• C(AT ): the row space of A, it contains all linear com-
binations of the rows of A (or, columns of AT )

• N(A): the nullspace of A, it contains all solutions to
the system Ax = 0

• N(AT ): the left nullspace of A, it contains all solutions
to the system ATy = 0.

All of them are subspaces because they are closed under
addition and scalar multiplication.

2.1 Dimensionality
These subspaces have the following dimensions: dimC(A) =
dimC(AT ) = r, where r is the rank of A; dimC(AT ) +
dimN(A) = n, i.e. dimN(A) = n − r. Also, dimC(A) +
dimN(AT ) = m, i.e. dimN(A) = m− r.

After applying Gaussian elimination for A with rank r, in
the result we get r independent rows and the rest m−r rows
are all set to 0. Because of this, only r columns have non-
zero entries in the pivot position, and thus dimC(AT ) =
dimC(A) = r. The rest n − r columns have no pivots and
correspond to free variables. The basis of N(A) is formed by
n − r “special” solutions to Ax = 0: we take free variables
xr+1, xr+2, ... , xn and assign them some values, making it
possible to solve the system for remaining x1, x2, ... , xr vari-
ables. It is possible to choose only n−r linearly independent
solutions, and, hence, dimN(A) = n − r. The same is true
for AT , thus, it’s true for N(AT ).

2.2 Orthogonality



Two vectors are orthogonal if their dot product produces 0.
If all vectors of one subspace are orthogonal to all vectors of
another subspace, these subspaces are called orthogonal.

Proposition 1. The row space C(AT ) and the nullspace
N(A) of A are orthogonal. The column space C(A) and the
left nullspace N(AT ) are also orthogonal.

Proof. Consider an m × n matrix A. Let r1, ... , rm
be the rows of A. The row space C(AT ) is formed by all
linear combinations of rows, i.e. it is α1r1 + ... + αmrm
for all possible choices of α1, ... , αm. The nullspace C(A)
is formed by all the solutions x to the system Ax = 0.

Let us take any vector r ∈ C(AT ). Because r ∈ C(AT ), it
can be expressed as r = α1r1 + ... + αmrm. We also can
take any vector n ∈ N(A), and because n ∈ N(A), we know
that An = 0. By the matrix-vector multiplication rule, the
ith component of An is rTi n and since An = 0, rTi n = 0 for
all i = 1 .. m.

Now let us consider rTn: rTn =
(
α1r1 + ... +αmrm

)T
n =

α1r
T
1 n + ... + αmrTmn = α10 + ... + αm0 = 0. Thus, r

and n are orthogonal, and since they are chosen arbitrarily,
it holds for all r ∈ C(AT ) and n ∈ N(A).

The same is true for C(A) and N(AT ). To show this, it is
enough to transpose the matrix A.

If two spaces are orthogonal and they together span the
entire space, they are called orthogonal compliments. C(AT )
and N(A) are orthogonal compliments as well as C(A) and
N(AT ). We can illustrate this with a picture (see fig. 1):
the row space C(AT ) and the nullspace N(A) are orthogonal
and meet only in the origin. They together span the space
Rn. C(A) and N(AT ) are also orthogonal and they together
span Rm.

3. SOLUTION TO Ax = b
3.1 The row space solution
Now we consider a system Ax = b. The general solution
is x = xp + xn, where xp is some solution to Ax = b,
and xn is the homogenous solution to Ax = 0, because
Ax = A(xp + xn) = Axp +Axn = b + 0 = b.

Since C(AT ) and N(A) are orthogonal compliments, they
span the entire space Rn and every x ∈ Rn can be expressed
as x = xr + xn such that xr ∈ C(AT ) and xn ∈ N(A).

Proposition 2. xr is unique.

Proof. Suppose there’s another solution x′r ∈ C(AT ).
Since C(AT ) is a subspace, it’s close under subtraction, so
(xr − x′r) ∈ C(AT ). Let’s multiply the difference by A:
A(xr − x′r) = Axr − Ax′r = b − b = 0. So (xr − x′r) ∈
N(A) and (xr − x′r) ∈ C(AT ). Since C(AT ) and N(A) are
orthogonal compliments, the only place where they meet is
in 0, so xr−x′r = 0 or xr = x′r. In other words, xr is indeed
unique.

column space

row space

nullspace left nullspace

Figure 1: The row space C(AT ) and the null space
N(A) are orthogonal compliments in Rn. The
columns space C(A) and the left nullspace N(AT ) are
orthogonal compliments in Rm.

As we mentioned earlier, there are many possible choices
of xp. Among all these choices of xp there’s once special
choice xr – the row space solution to the system. It’s special
because it belongs to the row space, and it’s unique. So
any solution to Ax = b can be written as a combination
x = xr + xn.

3.2 Existence
A solution to Ax = b exists only if b ∈ C(A), i.e. when b
is a linear combination of columns of A.

Let ai be the columns of A, i.e. A =

[
|

a1
|

|
a2
|
· · ·

|
an
|

]
. Then

for the solution to exist, there must exist (x1, ... , xn) s.t.
x1a1 + x2a2 + ... + xnan = b. If these (x1, ... , xn) exist,

they form a solution x =

x1...
xn

. Note that x1a1 + x2a2 +

... + xnan = b is the same as writing Ax = b.

We can illustrate this with a diagram (see fig. 2): b ∈ C(A),
so there is a solution x to the system. The solution x can
be expressed as xr + xn s.t. xr ∈ C(AT ) and xn ∈ N(A);
both Axr = b and Ax = b, and it is shown with arrows to
b.

3.3 Example

Consider a system with A =

1 1 1
1 2 3
2 3 4

 and b =

0
1
1

.

Let us first find the column space C(A): it is formed by

linear combinations α1

1
1
2

+α2

1
2
3

+α3

1
3
4

 for all possible

choices of (α1, α2, α3).



Figure 2: The general solution x to the system Ax =
b consists of two components xr ∈ C(AT ) and xn ∈
N(A). The solution to the system exists because
b ∈ C(A).

To check if the system Ax = b has a solution, we need to
show that b ∈ C(A). In other words, we need to show that

it is possible to find such x =

x1x2
x3

 that x1

1
1
2

+ x2

1
2
3

+

x3

1
3
4

 =

0
1
1

. In this example x1 = −1, x2 = 1 and x3 = 0:

−1

1
1
2

 + 1

1
2
3

 + 0

1
3
4

 =

0
1
1

. Note that here we not

only established that b ∈ C(A), but also found a solution

xp =

x1x2
x3

 =

 1
−1
0

. This solution is not necessarily the

row space solution, i.e. it may not belong to the row space
C(AT ).

The nullspace N(A) contains all the solutions to Ax =
0. To find them, we use Gaussian Elimination and trans-

form A to the Row-Reduced Echelon Form:

1 1 1
1 2 3
2 3 4

 →1 0 −1
0 1 2
0 0 0

. There are two pivot variables x1 and x2: they

have 1 at the pivot position, and there is one free variable
x3 that doesn’t have a pivot: it has 0 on this position. The
free variable can take any value, for example, we can assign

x3 = 1. Then we have xn =

x1x2
1

, we solve the system

and obtain x1 = 1, x2 = −2, so the solution is xn =

 1
−2
1

.

There is nothing special about the choice x3 = 1, so instead

we can choose x3 = α, and obtain xn =

 α
−2α
α

 = α

 1
−2
1

.

All possible choices of α form the nullspace N(A).

all solutions to

Figure 3: The basis of C(AT ) is two rows of A, N(A)
is orthogonal to C(AT ), and the set of all solutions
x is just shifted N(A). The row space solution xr

belongs to C(AT ) and it’s a solution to the system.

The complete solution x is a sum of some solution and the

homogenous solutions: x = xp + xn =

0
1
1

+α

 1
−2
1

. Note

that the set of all solutions x is just a shifted nullspace N(A)
(see fig. 3).

Because the rank of A is two, the row space C(AT ) contains
only two linearly independent vectors, so it is a plane in R3

formed by two rows r1 and r2. The row space solution xr

also belongs to C(AT ), but the solution xp =

 1
−1
0

 does

not (see fig. 3). If we want to find xr, at first we need to
recognize that it’s a projection of xp onto C(AT ). We will
see how to find this projection in the next section.

4. THE LEAST SQUARES
Sometimes there is no solution to the system Ax = b.

For example, consider a system

1 1
1 2
1 3

[x1
x2

]
=

1
0
0

. The

column space of A is C(A) = α1

1
1
1

+α2

1
2
3

. But for this

b it is not possible to find such α1, α2 that would produce b:
it is not a combination of columns of A, thus b 6∈ C(A) and
therefore there is no solution to Ax = b. What if we still
need to find some solution to this system, not necessarily
exact, but as good as possible?

4.1 Projection on column space
So the goal is to find some approximation x̂ such that Ax̂ ∈
C(A). To do it, we need p to be as close as possible to the
original b. Such p is called a projection of b onto C(A). Let
e = b−p be the projection error. The projection error need
to be as small as possible (see fig. 4).

Proposition 3. The projection error e is minimal, when
it’s perpendicular to C(A).

Proof. Let e = b−p be perpendicular to C(A) and con-
sider another vector p′ ∈ C(A), p′ 6= p such that e′ = b−p′



Figure 4: b 6∈ C(A), so there’s no solution to Ax = b.
p ∈ C(A) is a projection of b onto C(A), so there
exists a solution to Ax̂ = p.

Figure 5: The projection error e is smallest when
it’s perpendicular to C(A).

is not perpendicular to C(A). Then, by the Pythagoras the-
orem, ‖e′‖2 = ‖e‖2 + ‖p − p′‖2 > ‖e‖2, so ‖e′‖ > ‖e‖
for any e′ 6= e (see fig. 5). Thus, e is smallest when it is
perpendicular to C(A).

We need to find such x̂ that e is smallest. e is smallest when
it’s orthogonal to C(A), i.e. to all vectors on C(A): aT

1 e = 0
and aT

2 e = 0. We can write the same as AT e = 0. Since
e = b−p = b−Ax̂ and AT e = 0, we have AT (b−Ax̂) = 0
or ATAx̂ = ATb. This is called the Normal Equation and
it minimizes the error e. The Least Squares solution is x̂ =
(ATA)−1ATb.

There is another way to arrive at the same solution using
calculus. Suppose we want to minimize the sum of squared
errors ‖e‖2. So the goal is to find such x that minimizes
‖e‖2 = ‖b − Ax‖2. First, expand it as ‖b − Ax‖2 = (b −
Ax)T (b−Ax) = bTb−2xTATb+xTATAx. Now by taking
the derivative w.r.t. x and we obtain −2ATb + 2ATAx̂ = 0
or ATAx̂ = ATb. We come to the same conclusion, and
because we minimized the squared error, this technique is
called “Least Squares”.

There is one additional condition: ATA is invertible only
if A has independent columns. A has independent columns
when N(A) = { 0 }, so it is enough to show that ATA and
A have the same nullspaces.

Proposition 4. N(A) ≡ N(ATA)

Proof. In this proof, we show that both N(ATA) ⊆
N(A) and N(A) ⊆ N(ATA) hold at the same time, and
hence N(A) ≡ N(ATA).

First, we prove that ifATAx = 0 thenAx = 0, i.e. N(ATA) ⊆
N(A). Suppose x is a solution to ATAx = 0. By multiply-
ing it by xT we get xTATAx = 0. A dot product of vector

Figure 6: There is no solution to Ax = b because
b 6∈ C(A), but the projection p ∈ C(A) and there’s a
solution to Ax̂ = p. The projection error e ∈ N(AT )
and N(A) is empty: it contains only 0.

with itself is a squared L2 norm, so we have ‖Ax‖2 = 0.
A vector can have length 0 only if it is a zero vector, so
Ax = 0. Thus, x is a solution to Ax = 0 as well.

Next, we show that if Ax = 0 then ATAx = 0, i.e. N(A) ⊆
N(ATA). If x is a solution to Ax = 0, then by multiplying
it by AT on the left we get ATAx = 0.

Since N(ATA) ⊆ N(A) and N(A) ⊆ N(ATA), we conclude
that N(A) ≡ N(ATA).

This technique can be illustrated by the diagram as well (see
fig. 6): b is not in C(A), so we can’t solve the system, but
we can project b onto C(A) to get p and then solve Ax̂ = p
. Note that b = p + e, and e ∈ N(AT ). This is because to
obtain the Normal Equation we solve AT e = 0, and the left
nullspace N(AT ) contains all the solutions to ATy = 0.

4.2 Example

Consider a system with A =

1 1
1 2
1 3

, and b =

1
0
0

. To solve

ATAx̂ = ATb, we first calculateATA =

[
1 1 1
1 2 3

]1 1
1 2
1 3

 =

[
3 6
6 14

]
. Then, we calculate ATb =

[
1 1 1
1 2 3

]1
0
0

 =

[
1
1

]
.

Now we solve the system

[
3 6
6 14

]
x̂ =

[
1
1

]
and the solution

is x̂ =

[
4/3
−1/2

]
.

What if A did not have independent columns? Suppose A =1 2
1 2
1 2

. Then ATA =

[
3 6
6 12

]
. This matrix is singular,

i.e. it doesn’t have the inverse, and thus we cannot solve the
system ATAx̂ = ATb.



4.3 Application: OLS Regression
The Least Squares method is commonly used in Statistics
and Machine Learning to find a best fit line for a given data
data set. This method is called OLS Regression (Ordinary
Least Squares Linear Regression) or just Linear Regression.

Linear Regression problem:

Given a dataset D = { (xi, yi) } of n pairs (xi, yi) where
xi ∈ Rd and yi ∈ R we train a model that can predict y
for new unseen data points x as good as possible. To do
this, we fit a line y = w0 + w1x1 + w2x2 + ... + wdxd.
This is the best fit line, w0 is the intercept coefficient, and
w1, ... , wn are the slope coefficients. Let x0 = 1, so we can
write y = w0x0 + w1x1 + w2x2 + ... + wdxd = wTx. Let

X =


− x1 −
− x2 −

...
− xn −

. This X is called the data matrix and its

rows are formed by xi. X is a n × (d + 1) matrix. Also let

w =


w0

w1

...
wd

 ∈ Rd+1 and y =


y1
y2
...
yn

 ∈ Rn.

We need to solve the system Xw = y, but usually there
is no solution, so we use the Normal Equation, and the
Least Squares solution to this problem is given by ŵ =
(XTX)−1XTy.

Example. Consider a dataset D = {(1, 1), (2, 0), (3, 0)}.

We add w0 = 1 to each observation and have x1 =

[
1
1

]
,x2 =[

1
2

]
,x3 =

[
1
3

]
. Let X =

− x1 −
− x2 −
− x3 −

 =

1 1
1 2
1 3

 and y =y1y2
y3

 =

1
0
0

. Then ŵ = (XTX)−1XTy =

[
4/3
−1/2

]
(see

fig. 7).

5. CONCLUSION
The paper presents the “Strang’s diagram” for helping stu-
dents to understand Linear Algebra better. The purpose
of this paper is educational, there is no novelty (the pic-
tures had been presented earlier in the author’s textbook
[2]) and no research. Also, the claim that the pictures il-
lustrate actions of the matrix “in a way they [the students]
won’t forget” is not supported by any statistical evaluation.
And finally, the reader should already be familiar with con-
cepts of Linear Algebra to understand the paper, and there
are no supporting examples.

However, the presented diagram is indeed an effective tool
for illustrating the four fundamental subspaces and their re-
lation to the important concepts like orthogonality, solution
existence, projections, all in one place in a concise form. It
also helps to think of many Linear Algebra problems, such
as solving the system Ax = b or finding the Least Squares
solution, in terms of the subspaces and it is very beneficial
for understanding these problems.

Figure 7: The best fit line with w0 = 4/3 and w1 =
−1/2. x1, x2, x3 are the data points, p1, p2, p3 are OLS
predictions, and e1, e2, e3 are prediction errors.

Lastly, the paper summarizes the author’s textbook [2] and
therefore reading the paper is a good way of refreshing the
key concepts of Linear Algebra.
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